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Background and Purpose: In every organization, project management raises many different decision-making prob-
lems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such 
kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to 
solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In 
our solution, we take into account the following organizational resource and project characteristics: profits, costs and 
risks. 
Design/Methodology/Approach: The decision-making problem is reduced to a multi-criteria 0-1 knapsack prob-
lem. This implies that we need to find a non-dominated set of alternative solutions, which are a trade-off between 
maximizing incomes and minimizing risks. At the same time, alternatives must satisfy constraints. This leads to a 
constrained two-criterion optimization problem in the Boolean space. To cope with the peculiarities and high com-
plexity of the problem, evolution-based algorithms with an island meta-heuristic are applied as an alternative to 
conventional techniques. 
Results: The problem in hand was reduced to a two-criterion unconstrained extreme problem and solved with differ-
ent evolution-based multi-objective optimization heuristics. Next, we applied a proposed meta-heuristic combining 
the particular algorithms and causing their interaction in a cooperative and collaborative way. The obtained results 
showed that the island heuristic outperformed the original ones based on the values of a specific metric, thus showing 
the representativeness of Pareto front approximations. Having more representative approximations, decision-makers 
have more alternative project portfolios corresponding to different risk and profit estimations. Since these criteria 
are conflicting, when choosing an alternative with an estimated high profit, decision-makers follow a strategy with an 
estimated high risk and vice versa. 
Conclusion: In the present paper, the project portfolio decision-making problem was reduced to a 0-1 knapsack 
constrained multi-objective optimization problem. The algorithm investigation confirms that the use of the island 
meta-heuristic significantly improves the performance of genetic algorithms, thereby providing an efficient tool for 
Financial Responsibility Centres Management.

Keywords: 0-1 multi-objective constrained knapsack problem; project management portfolio problem; multi-objective 
evolution-based optimization algorithms; collaborative and cooperative meta-heuristics
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1 Introduction

When managing an organization, many different kinds of 
problems can be faced and a large proportion of these can 
be solved mathematically. These problems are actually de-
cision-making problems in the space of alternatives and 
thus can be reduced to mathematical programming prob-
lems in which a solution that provides an extremum value 
of some criterion is a decision. The aim of decision-mak-
ing support systems is to solve these mathematical pro-
gramming problems so that managers could base their de-
cisions on numerical analysis performed by the program 
software. This means that a computational system which 
supports the decision-making process for top managers in 
the project management problem is important, useful and 
its application provides a mathematically determined solu-
tion. In this paper, we focus on the problem, which takes 
place in machine-building factory management, where the 
project investment problem should be solved. According 
to this, we need to allocate funds among different financial 
responsibility centres.

In this study, we consider the two-objective knapsack 
problem, which is in some way similar to a real invest-
ment portfolio management problem for a factory. Here a 
factory, considered as a system, contains different subsys-
tems with their specific products, functionality and proper-
ties. In big companies, there are many innovative projects 
aimed at modernizing technology, thus increasing income, 
reducing the amount of work in progress and making the 
business more client-oriented. Therefore, by solving this 
problem, it becomes possible to reduce the time spent by 
top managers on making decisions – their projects should 
be accepted and realized in the near future. It is impor-
tant and should be highlighted that the characteristics of 
each subsystem and the complexity of project domains 
prevent people from being experts in all areas and, con-
sequently, from making a properly weighted and informed 
decision. This explains the importance and the value of 
decision-making support systems with a growing focus on 
algorithms solving related problems.

The problem discussed in this paper differs from the 
ones in Markowitz’s (Markovitz, 1952) modern portfolio 
theory based on mean-variance analysis, and also from 
those discussed in post-modern portfolio theory (Rom and 
Ferguson, 1993). It has the form of the decision-making 
multi-objective optimization problem, specifically, the 
two-criterion 0-1 knapsack optimization problem with 
constraints. The growing complexity, which is caused by 
growth in the problem dimensionality, nonlinearities, the 
specific nature of alternatives’ representations and the mul-
timodality of criteria, requires new algorithms which al-
low these difficulties to be overcome. Such algorithms are 
so-called evolution-based and nature-inspired techniques 
– stochastic optimization algorithms modified by many 
researchers to deal with complex problems. These mod-

ifications change the algorithm operators, the algorithm 
structure or the meta-heuristics controlling the behaviour 
of the extremum-seeking algorithm.

There are many different approaches proposed for 
solving those portfolio problems in which various mod-
ifications are implemented. One of them is based on ge-
netic algorithms (Goldberg, 1989) and an entropy-based 
modification (Aslan et al., 2015) which finds a solution in 
mean-variance terms. In the study (Drezewski and Dor-
oz, 2017), the multi-agent co-evolutionary approach is 
applied to a portfolio multi-criteria optimization problem, 
and the genetic algorithm here is the main optimization 
technique. A combination of a genetic algorithm and parti-
cle swarm optimization (Kennedy and Eberhart, 1995) for 
solving this kind of problems is considered in (Kuo and 
Hong, 2013). The results of these investigations show that 
meta-heuristics greatly improve the performance of the al-
gorithm.

Multi-objective knapsack optimization problems are 
still of vital importance. Many different approaches are ap-
plied, combined and developed for solving these problems 
which arise from decision-making problems of different 
backgrounds in various organizations. In the paper (Vi-
anna and Vianna, 2013) a specific optimization algorithm 
based on a greedy-randomized adaptive search procedure 
(Feo and Resende, 1995) and a multi-objective iterat-
ed local search is proposed. In this work, many different 
multi-objective optimization methods were presented and 
one of them was the Chebyshev-based modification of a 
genetic algorithm (Alves and Almeida, 2007). In the study 
(Florios et al., 2010) some different approaches based on 
genetic algorithms were investigated for solving the con-
sidered problem.

In this study, we compare some cooperative approach-
es with homogenous and heterogeneous combinations 
joined in the island model for solving the project manage-
ment decision-making problem for a machine-building 
factory. The experimental results prove that the proposed 
meta-heuristics outperform standard multi-criteria optimi-
zation algorithms.

2 Project Portfolio and 0-1 Knapsack 
Multi-Criteria Problem

One of the common ways of alternative space representa-
tion in the 0-1 knapsack problem, related to project port-
folio management, is the Boolean space Bn, where n is a 
space dimension and is equal to the number of projects. 
In other words, the way the knapsack is packed (portfolio 
of projects), is a Boolean vector xϵBn in which coordinates 
are decisions on each project: it is 0 or false if we decline 
the project realization and it is 1 or true if we accept the 
project. In this study, we consider an organization which 
structurally consists of m financial responsibility centres 
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(FRC) and there are   
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determines the dimensionality of the Boolean space.
In this decision-making problem, the j-th project of 

i-th FRC has the following characteristics: ci, j denotes the 
annual costs of the project realization, Ri, j is an expert’s es-
timation of its realization risks and Pi, j is the annual profit 
of the project if it is accepted. The whole organization also 
has its own characteristics: C is the total amount of credits, 
which is normally a sum of Ci, the annual credits of each 
FRC for project realizations and Ĉ, which is the same for 
the whole organization. We may also require the specific 
rate of return on capital r to be satisfied.

This problem definition leads to a pseudo-Boolean op-
timization problem with two criteria and inequality con-
straints. The first criterion is the maximization of the profit 
of all the accepted projects and the second criterion is the 
minimization of the sum of the risks. As can be seen, the 
first criterion is to be maximized, and the second – mini-
mized:

where 

is a specific indexing function which returns the index of a 
Boolean vector for the j-th project of the i-th FRC.

At the same time, the project portfolio must satisfy the 
constraints. We cannot exceed the amount of credits and 
we cannot go below the current return rate on capital:

To reduce the constrained extremum-seeking problem 
(1)-(4) to an unconstrained one, we use the static penalty 
functions:

B x F x B x r
2 1 1
( ) ( ) / ( ) .= ≥

and the initial problem can be determined with the formu-
las:

where positive numbers 

 are the controlling parameters. In this study, we set all the 
parameters equal to α = 103.

The considered problem (6) and (7) is known to be 
NP-hard so there is no time and computational-efficient 
optimization technique that would find a global optimum. 
This becomes further complicated when we need to find 
the set of solutions which approximates the Pareto set. As 
was mentioned earlier, we need a specific optimization 
technique which is efficient in solving this kind of prob-
lem, and for this purpose we use modern multi-objective 
algorithms and improve them with the island meta-heuris-
tic (Preuss, 2015). 

3 Multi-Objective Genetic Algorithms 
and the Island Model Meta-
Heuristic

The common scheme of any multi-objective genetic algo-
rithm (MOGA) includes the same steps as any convention-
al one-criterion GA (Crainic and Toulouse, 2010):

1  Generate the initial population
2  Evaluate criteria values;
3	 	Estimate	fitness-values;
4	 	While	(stop-criterion!=true),	do:
  {
5	 	Choose	the	most	appropriate	individuals	with	the	
	 	mating	selection	operator	based	on	their	fitness- 
  values;
6	 	Produce	new	candidate	solutions	with	recombination;
7	 	Modify	the	obtained	individuals	with	mutation;
8	 	Evaluate	criteria	values	for	new	candidate	solutions;
9	 	Estimate	fitness-values;
10	 	Compose	the	new	population	(environmental	 
	 	selection);
  }

αi j i j,
, , ,=1 2
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When designing a MOGA, researchers are faced with 
some issues relating to fitness assignment strategies, di-
versity preservation techniques and ways of elitism imple-
mentation. Therefore, we will consider the effectiveness of 
MOGAs which are based on various heuristics. Non-Sort-
ing	 Genetic	 Algorithm	 II	 (NSGA-II) (Deb et al., 2002), 
Preference-Inspired	Co-Evolutionary	Algorithm	with	goal	
vectors	(PICEA-g)	(Wang, 2013) and Strength	Pareto	Evo-
lutionary	Algorithm	2	 (SPEA2) (Zitzler et al., 1997) are 
used as tools to optimize the introduced criteria. The basic 
features of each method are displayed in Table 1.

MOGA Fitness Assignment Diversity Preservation Elitism

NSGA-II
Pareto-dominance (niching mecha-

nism) and diversity estimation (crowd-
ing	distance)

Crowding distance Combination of  the previous 
population and the offspring

PICEA-g Pareto-dominance (with	generating	
goal vectors)

Nearest neighbour 
technique

The archive set and combina-
tion of  the previous popula-

tion and the offspring

SPEA2

Pareto-dominance (niching mech-
anism) and density estimation (the 

distance	to	the	k-th	nearest	neighbour	
in the objective space)

Nearest neighbour 
technique The archive set 

Table	1:	Basic	features	of	the	MOGA	used

Figure	1:	The	three	categories	of	algorithms	used

However, it is almost impossible to know in advance 
which algorithm is the most effective for the current 
problem. On the one hand, a series of experiments might 
be conducted to find the best MOGA, which is quite a 
time-consuming approach. On the other hand, different 
algorithms might be combined in a cooperation to avoid 
having to choose the most effective one. In reality, this 
kind of modification is easily implemented and is based 
on an island model. 

The island	model (Whitley et al., 1997) of a GA im-
plies the parallel work of several algorithms: they might 
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be the same or different. The initial number of individu-
als M is spread across L subpopulations: Mi=M/L,	i=1,…, 
L. At each T-th generation, algorithms exchange the best 
solutions (migration). There are two parameters: migration 
size, the number of candidates for migration, and migration 
interval, the number of generations between migrations. It 
is also necessary to define the island model topology, in 
other words, the scheme of migration. We use fully con-
nected topology, meaning that each island shares its best 
solutions with all the other islands included in the model. 
This multi-agent model is expected to preserve a higher 
level of genetic diversity. 

Firstly, the conventional NSGA-II, PICEA-g, and 
SPEA2 have been implemented to be used as optimizers 
(Figure 1 top).

Secondly (Figure 1, middle), we have achieved a num-
ber of homogeneous cooperative algorithms: in each case, 
the island model has the same three components: they are 
NSGA-II, PICEA-g or SPEA2. In addition to diversity 
preservation, another benefit of this model is the possibility 
to reduce the computational time due to the parallel work 
of islands.

Finally, a heterogeneous cooperative algorithm has 
been developed (Figure 1, bottom). Three different MO-
GAs (NSGA-II, PICEA-g and SPEA2) have been included 
in this model as its components simultaneously. The ben-
efits of the particular algorithm (NSGA-II, PICEA-g or 
SPEA2) could be advantageous at different stages of opti-
mization (Brester and Semenkin, 2015). 

In summary, there are three main categories of MO-
GAs which are used in this study and they are portrayed 
in Figure 1. 

4 Statistical Investigations

The problem in question was solved for a big ma-
chine-building plant. There were five FRC (m = 5) and 
each FRC had its own list of projects and required invest-
ments (N1 = 8, N2 = 6, N3 = 5, N4 = 3, N5 = 3). 

For each of the projects, we had an expert’s estimations 
of the risks Ri, j and annual profits Pi, j . The whole number 
of projects n was equal to
hence in this knapsack problem we had 25 Boolean varia-
bles. Other parameters were set as follows: Ĉ = 40,r = 0.5.

Firstly, we used an exhaustive search to design a true 
Pareto front. It required 225 = 33554432 vector-function 
evaluations. In Figure 2, the obtained front is presented. 
It might be noted that the dependence between the F1 - (6) 
and F2 - (7) criteria is close to linear. Increasing the profit 
would cause an increasing in the risk, and minimizing the 

N j
j

m

=
=
∑ 25
1

risk leads to a decrease in profit. 
It is essential to note that for an exhaustive search, an 

increase in the problem dimensionality leads to the expo-
nential growth of vector-function evaluations. Therefore, 
for high-dimensional problems, it might be time-consum-
ing and some alternative methods should be developed. 

Next, we applied the conventional NSGA-II, PICEA-g 
and SPEA2 to solve the problem. In all the experiments, 
we defined the following settings: binary tournament se-
lection, uniform recombination and the mutation probabil-
ity pm	=	 1/L, where L is the length of the chromosome. 
A series of tests with different amounts of resources was 
conducted: Exp. 1 – 100 individuals and 200 generations 
(20,000 vector-function evaluations), Exp. 2 – 200 indi-
viduals and 300 generations (60,000 vector-function eval-
uations), Exp. 3 – 300 individuals and 400 generations 
(120,000 vector-function evaluations). To estimate the 
quality of the obtained approximations of the true front, we 

involved Inverted	Generational	Distance (IGD) (8), which 
equates the average distance from the true Pareto front P* 
to the found solution A (Zhang et al., 2008): 
where d(v,	A) is the minimum Euclidean distance between 
v and the points in A. 

All the results were averaged over 25 runs of each al-
gorithm. Table 2 contains the averaged IGD values corre-
sponding to three experiments (Exp. 1, 2 and 3) and three 
conventional MOGAs (NSGA-II, PICEA-g and SPEA2).

By increasing the amount of resources, we obtain ap-
proximations which are getting closer to the true front. 
In two cases (for PICEA-g and SPEA2), we may see a 
great improvement of IGD values caused by the growth 
of vector-function evaluations. For NSGA-II, increasing 
the amount of resources by a factor of two does not lead 
to a significant improvement (from 20,000 up to 60,000) 
or to any improvement (from 60,000 up to 120,000). The 
algorithm which was the best for the lowest number of 
vector-function evaluations (Exp. 1) was the worst for the 
highest number of calculations (Exp. 3).

To illustrate the obtained solutions, from each ex-
periment we chose one Pareto front approximation cor-
responding to the median value of IGD. In Figure 3, we 
depict these approximations. 

Then, we applied three homogeneous cooperative 
MOGAs: NSGA-II – NSGA-II – NSGA-II, PICEA-g – 
PICEA-g – PICEA-g and SPEA2 – SPEA2 – SPEA2. For 
each MOGA, all islands had an equal amount of resources 
(200 generations and 300/3 = 100 individuals in popula-
tions), the migration size was equal to 20 (in total, each 
island received 40 points from two others), and the mi-
gration interval was equal to 20 generations. Thus, in this 
experiment the amount of resources corresponded to the 

IGD P A
d v A
P

v P( *, )
( , )

| * |

*= ∈∑ (8)
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Figure	2:	The	true	Pareto	front	for	the	real	problem	considered

Table	2:	Experimental	results.	IGD	values	for	the	conventional	MOGAs

MOGA
IGD values

Exp. 1 (20,000 eval.) Exp. 2 (60,000 eval.) Exp. 3 (120,000 eval.)
NSGA-II 0.5520 0.4664 0.4838
PICEA-g 0.9649 0.5598 0.3564
SPEA2 0.7352 0.4423 0.2822

Figure	3a:	The	Pareto	front	approximations	obtained	by	NSGA2

number of vector-function evaluations in Exp. 2 (60,000). 
We also estimated the averaged IGD values and presented 
them in Table 3. It might be noted that the use of the island 
model led to a considerable improvement in IGD values. 
Moreover, having the same amount of resources as we had 
in Exp. 2, we could achieve IGD values which were com-
parable with (for PICEA-g and SPEA2) or even better (for 
NSGA-II) than we gained in Exp. 3. 

Finally, the heterogeneous MOGA (NSGA-II – PI-
CEA-g – SPEA2) was used to solve the problem in ques-
tion. Again, we provided the algorithm with 60,000 vec-
tor-function evaluations. All the other settings were also 
the same (as for homogeneous cooperative MOGAs). The 
averaged IGD value obtained by the heterogeneous coop-
erative MOGA is equal to the best averaged IGD value 
achieved by the homogeneous cooperative MOGA (Table 
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Figure	3b:	The	Pareto	front	approximations	obtained	by	PICEA-g

Figure	3c:	The	Pareto	front	approximations	obtained	by	SPEA2

Table	3:	Experimental	results.	IGD	values	for	the	cooperative	MOGAs

IGD values

Homogeneous	cooperative	MOGAs

NSGA-II – NSGA-II – NSGA-II 0.2985

PICEA-g – PICEA-g – PICEA-g 0.4153

SPEA2 – SPEA2 – SPEA2 0.3876

Heterogeneous	cooperative	MOGA

NSGA-II – PICEA-g – SPEA2 0.2984
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3). It is also comparable with the best result in Exp. 3 (with 
120,000 vector-function evaluations). 

In Figure 4, we show one Pareto front approximation 
found by the heterogeneous cooperative MOGA and cor-
responding to the median value of IGD. 

The results obtained proved the effectiveness of coop-
erative MOGAs: firstly, with the same amount of resources 
we could attain much better IGD values and, secondly, us-
ing the heterogeneous cooperative MOGA, we could avoid 
having to choose the most appropriate MOGA for the cur-
rent problem (it is essential because MOGAs demonstrate 
different performances in Exp. 1, 2 and 3). 

As one can see, the estimated Pareto front provides 
decision-makers with possible outcomes, in case they 
consider multiple criteria, and enables them to choose the 
combination, which would fit the current state of the mar-
ket. The proposed heterogeneous island approach also pro-
vides faster convergence toward the solutions.

5 Conclusion

In this study, we focused on the decision-making problem 
related to machine-building factory portfolio management 
with the goal of optimal investment, which can be defined 
as the 0-1 multi-objective constrained knapsack optimi-
zation problem. This problem is NP-hard, the criteria are 
mappings from the Boolean space and we need to estimate 
the Pareto front on a set of permissible alternatives. To 
reach the goal, an efficient multi-objective optimization 
technique is required.

We applied well-known evolution-based algorithms 
such as PICEA-g, SPEA2 and NSGA-2 for this problem 
with different amounts of resources. The algorithms were 

compared using the specific IGD metric, which is a com-
mon measure of Pareto front representativeness. As can 
be seen, increasing the computational resources usually 
yielded an increase in the efficiency of the algorithm and, 
with the exception of NSGA2, the increase is significant. 
Hence, adding more resources may improve the results, 
though the effect is unpredictable and non-linear. More-
over, in the case of NSGA2 being applied to this prob-
lem, the median of the IGD metric was not improved after 
60,000 evaluations and this is probably a result of the al-
gorithm behaviour.

To overcome this obstacle, we used an island model 
based on the interaction among multi-objective optimiza-
tion algorithms: homogeneous, when the algorithms are of 
the same nature, and heterogeneous, when the algorithms 
are different. Experimental results show that the developed 
approach outperforms the original algorithms even with 
the lower amount of computational resources. The most 
efficient algorithms are the following: the heterogeneous 
algorithm with the SPEA2, NSGA-2 and PICEA-g combi-
nation and the homogeneous algorithm with three NSGA-
2. This implies that the island model-based multi-objec-
tive algorithms are more efficient and more promising in 
solving the complex NP-hard problems of organizational 
management.

The proposed approach provides us with a set of 
non-dominated alternatives, which are project portfolios 
with different profits and risks. This solution is valuable 
for top managers when they make decisions on future in-
vestments based on the current state of the whole organ-
ization and estimations of project characteristics. More 
profitable project portfolios usually have a high level of 
risks and less profitable project portfolios correspond to 
a low level of risks. The main benefit of applying the pro-

Figure	4.	The	Pareto	front	approximation	obtained	by	the	heterogeneous	MOGA



www.manaraa.com

Organizacija, Volume 50 Number 4, November 2017Research Papers

372

posed approach is its flexibility and ability to show the 
bigger picture. Whatever risk value is confirmed by the de-
cision-maker, the Pareto set approximation gives the best 
portfolio in terms of the profit and vice versa. 

Our proposal is going to be investigated on higher-di-
mensional similar problems with nonlinear profit func-
tions, since most of the projects are related and affect each 
other. This is the first possible direction of our research 
in the near future. Following this, it would be reasonable 
to solve similar problems with stochastic uncertainties as 
is considered in modern portfolio theory where risks and 
profits are the stochastic variables.
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